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Abstract

The HSN MURI program has been organized in the past six years to address several challenging fun-
damental issues in sensor fusion and integration, automatic target recognition and tracking, and 3-D recon-
struction of urban models based on heterogeneous sensor networks. In particular, our approach as outlined
in the program proposal has been to achieve the following goals:

1. New theories of distributed signal processing with random spatio-temporal sampling of complex
scenes for recognition and tracking of objects in heterogeneous sensor networks (HSNs).

2. Robust design principles for sensor networks with both low and high bandwidth sensors to automati-
cally recognize and track targets in complex urban environments.

3. Metrics for the design and deployment of sensor webs, and theoretical bounds on the performance of
different kinds of sensor webs.

4. Incorporate mobility into sensor webs, and develop algorithms that take into account mobility of nodes
and the need to query sensor nodes using mobile assets.

We are pleased to report that the team has had great success in our research endeavors, as evidenced
numerically by the number of peer reviewed papers as well as a significant number of honors and best paper
awards received by our team members. Some of the most significant works are listed as follows:

1. Kusy, Ledeczi, and Koutsoukos received a Best Papaer Award at SenSys 2007.

2. Yang and Sastry received a Best Student Paper Award at ACCV 2009.

3. Alan Willsky was elected to the National Academy of Engineering in 2010 for contributions to model-
based signal processing and statistical inference.

4. Gu and Zakhor received a best paper award from the IEEE Transactions of Semiconductor and Man-
ufacturing in 2010.

5. Yang and Sastry’s work on sparsity-based classification was a Top 100 Paper Download from IEEE
in 2010.

6. Bela Bollobas was elected to the Fellowship of the Royal Society in 2011 for contributions in combi-
natorics.

7. Malioutov, Cetin, and Willsky received a Best Paper Award from the IEEE Signal Processing Soceity
in 2011.

In this final scientific report, we summarize the key contributions in each of the above four Thrusts.
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1 Thrust I: Sensor Fusion Algorithms for Heterogeneous Sensors

Investigators: John Fisher, Xenofon Koutsoukos, Akos Ledeczi, and Alan Willsky.
In Thrust I, we have been focused on the development of new frameworks on distributed signal process-

ing and wireless data communications for heterogeneous sensor networks with computing, communication,
and energy constraints.

1. Scalable Sensor Fusion for Graphical Models (Willsky & Fisher).

This work began before the start of this MURI (and under its predecessor SensorWeb MURI) and
has continued throughout the full length of this project. In the first year of the project our work
in this area had several components. One of these was the development of a distributed detection
network for near-optimal detection and localization of chemical releases [54] including extensive
tradeoff analysis to determine an effective strategy for parsimonious communication with minimal
loss in detection/localization performance. Our early work [37] also includes a summary of sev-
eral aspects of our foundational work in adapting and extending graphical model inference methods
to problems of distributed fusion, including work on distributed target tracking and data associa-
tion via message-passing, error analysis in message-passing algorithms and implications for efficient
encoding of messages, and sensor management in distributed tracking. Another early part of this
component of our research, covered in [39–42], deals with the analysis of particular classes of dis-
tributed message-passing algorithms for Gaussian problems. This analysis, which involves so-called
walk-sum computations that capture the informational flow as messages traverse walks from node
to node in a network, provides easily checked and very broad sufficient conditions for convergence
and optimality of large classes of algorithms as well as two other very important features for sensor
networks, namely (a) provably optimal fusion performance for slightly modified algorithms that can
accommodate transmission failures; and (b) adaptive methods for choosing, at each stage in the fusion
process, the best set of messages (and hence walks) to send in order to maximize impact on fusion
accuracy with minimal usage of communication resources. A third early component of this part of
our research [86, 87] provides theoretical results making clear conditions that ensure optimality of
max-product algorithms for so-called weighted matching problems. This is particularly relevant to
problems in wireless networks and distributed fusion, as the “weights” can be set to capture either
raw communication capacity or informational value, resulting in algorithms that yield, in an adaptive
manner, the best set of paths to be used for communication or fusion in terms of maximizing weight
subject to constraints on the load on each node.

Another early thrust of our work in this area was on Lagrangian relaxation methods for the solution of
large-scale graphical estimation problems [38, 61, 62], such as those that arise in multi-sensor, multi-
target data association. Our new methods provide scalable and potentially distributed algorithms for
breaking up otherwise intractable problems into smaller (and tractable), overlapping pieces and then
performing iterative optimization, including coordination among the solutions to these pieces in order
to guarantee agreement on their overlap. We have provided a version of this algorithm to BAE Systems
Advanced Information Technologies.

More recent components of our work in this area include work on using Belief Propagation for adap-
tive networking and routing [88] and our work on so-called “feedback message passing.” A new
approach to distributed fusion in graphical models highlights the role of key nodes. This method
makes use of the notion of a feedback vertex set, i.e., a set of nodes that, if removed, render a graph
cycle-free. With such a set identified, a new messaging algorithm results in which several message
streams are created, culminating in fusion at the feedback vertex nodes and subsequent messaging to
disseminate information throughout the graph. This algorithm provably gives exact answers for Gaus-
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sian inference but is computationally tractable only for graphs with modest-sized feedback vertex sets.
More generally, we have developed a method for choosing a set of most important vertices – i.e., ones
that are the most significant “information hubs” for the graph and we then employ the same algorithm
but now using only a set of these important hub vertices. The resulting algorithm yields approximate
answers (since not all loops in the graph have been broken), but our results demonstrate that excellent
and scalable performance is readily achieved using only modest-sized sets of hub vertices, includ-
ing for graphical models for which previously developed algorithms fail to converge. The work that
has been documented to date in [68, 69] describes this approach in detail for Gaussian models. Our
most recent (but yet to be documented) work deals with using this feedback concept both for scal-
able sampling from such models and for inference in non-Gaussian (and in particular discrete-valued)
processes.

2. Team-Theoretical Algorithms for Distributed Decision-Making (Willsky & Fisher).

This work focuses on developing team-theoretic algorithms for distributed decision-making in which
both data and decision-making responsibility are distributed throughout the network. In this case
each node must build models both for the probabilistic meaning of messages that the node receives
from other nodes and for the cost resulting from messages that the node sends to others (in terms
of the decisions made by those nodes directly and indirectly through subsequent messaging to still
other nodes). Formulating these problems as team-optimization problems and invoking the concept
of person-by-person optimality, we have developed message-passing algorithms that allow nodes to
build these required models – i.e., to develop what we refer to as fusion protocols for interpretation
of received messages and for local objectives for generating messages to be transmitted. We first
developed this framework in the context of purely feed-forward networks in which, while decision-
making and data are distributed throughout the network, communication is allowed only along a
directed acyclic graph. In this context we have demonstrated that, depending on the distributed fusion
structure, e.g., which nodes are responsible for which decisions, it may be better to use message-
passing networks that differ from the underlying graphical structure of the underlying variables being
sensed. We also developed a generalization to problems in which communication can be two-way.
In this case true optimality is quite complex, as the bits transmitted by each sensor can convey two
types of information, namely, information of value to the receiver as well as information to guide that
receiver in what it will transmit back to the originating sensor. Hence this formulation captures both
information-push and information-pull. We developed suboptimal, principled, and tractable solutions
to this problem.

Another portion of our research involved the exploitation of new methods in nonparametric Bayesian
analysis – namely those involving so-called Dirichlet Processes and Hierarchical Dirichlet Processes,
which allow an effective method for learning models for complex behavior without pre-specifying
the degree of that complexity. For example, [12] provides a new method for target tracking and
data association without having to explicitly postulate or enumerate the different numbers of targets
present. The work in [13-14] deals with developing models for maneuvering targets in which we learn
maneuver modes for the targets without prior knowledge of their nature or the number of different
modes. Generalizations of these methods to discovering more complex hidden dynamic behavior in
terms of switching modal behavior (modeled via an HMM with an unknown state space) and dynamics
(in terms of the details of dynamics of the observed time series) are documented in [55–58].

We have also had great success in another component of our research, namely an approach blend-
ing so-called level-set methods and dimensionality reduction to learn high-performance processing
methods for discrimination tasks in both centralized and networked systems [102–104]. The idea
behind these methods is to use available training data both to identify lower-dimensional projections
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of the data of most significance for the discrimination task as well to determine decision boundaries
in these reduced-dimension spaces via curve evolution. A distributed version also allows this to be
accomplished with limited communication among sensing nodes.

3. Learning Tractable Models for Complex Sources of Data and for Characterizing the Performance
(Willsky & Fisher).

The last major component of our research deals with several different approaches to learning tractable
models for complex sources of data and for characterizing the performance of these algorithms. A
first part of this work developed methods for identifying graphical models, where the explicit objec-
tive is to build models that are of most value for discrimination tasks [90, 96]. This is of consider-
able importance in problems in which we have high-dimensional data (e.g., from many sensors) but
comparatively few samples compared to the data dimension. In such a case building, say, maximum
likelihood models for each class to be discriminated is problematic; moreover, such methods are likely
to emphasize aspects of the data that explain most of the variability and energy. In our approach, the
focus is on saliency, i.e., on identifying models that highlight those aspects of each class that are most
useful for discriminating it from other classes. This can often be accomplished with far less data and
hence is of considerable value for many surveillance applications.

A second thrust in learning models is our work on characterizing the performance and scaling behavior
of optimal methods for learning graphical models on trees and, more recently, other graphs i.e., in
which the structure of the model relating a large set of variables is to be learned from data [92,95,97].
Our work, using methods of large deviations, identifies the most likely errors as well as the error
exponent associated with those errors. The work also identifies models that are easiest and most
difficult to learn as well as providing scaling laws on how performance depends on the dimension of
the model and the available number of samples.

The final thrust of our research has been on developing methods to discover “hidden” structure in
complex data i.e., hidden variables that help explain the complex interactions of variables that are ob-
served and hence provide notions of context in which observed behavior can be interpreted. This work
has had two components. The first [48, 49] involves the learning of hidden tree-structured graphical
models, with applications in scene understanding and object recognition, in which that hidden struc-
ture represents context in which the observed data and objects are embedded. The second [43–46]
involves the development of convex relaxations of formulations that seek to recover parsimonious
representations of the available data in which parsimony is captured by sparsity of graphical models
as well as dimensionality of the hidden variables. Theoretical guarantees and effective algorithms
have been developed.

4. Shooter Localization with a Minimal Number of Single-Channel Wireless Sensor Nodes (Koutsoukos
& Ledeczi).

Acoustic shooter localization systems are being rapidly deployed in the field. However, these are
standalone systems either wearable or vehicle-mounted that do not have networking capability even
though the advantages of widely distributed sensing for locating shooters have been demonstrated
before. The reason for this is that certain disadvantages of wireless network-based prototypes made
them impractical for the military. Systems that utilize stationary single-channel sensors require many
sensor nodes, while the multi-channel wearable version needs to track the absolute self-orientation of
the nodes continuously, a notoriously hard task. We have developed an approach that overcomes the
shortcomings of past approaches. Specifically, the technique requires as few as five single-channel
wireless sensors to provide accurate shooter localization and projectile trajectory estimation. Caliber
estimation and weapon classification are also supported. In addition, a single node alone can provide
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reliable miss distance and range estimates based on a single shot as long as some reasonable assump-
tion holds. The main contribution of the work is the novel sensor fusion technique that works well
with a limited number of observations. The technique is thoroughly evaluated using an extensive shot
library. Our results are reported in [76].

5. External Smart Microphone for Mobile Phones (Koutsoukos & Ledeczi).

Mobile phones are gaining popularity as sensing platforms. They already come with a set of built-in
sensors, such as GPS, accelerometer, microphone and radio, enabling interesting applications. Fur-
thermore, several systems exist where external sensors are interfaced with mobile phones to monitor
medical conditions or support environmental sensing, for example. We have developed an external
acoustic sensor that interfaces with a mobile phone to support continuous monitoring of sounds in the
environment [105]. The on-board electronics samples the microphone, performs signal processing
and detection tasks and sends the events of interest to the mobile phone via Bluetooth. The main
reasons the built-in microphone is not able to support such an application is the high power usage of
continuously sampling and processing the acoustic signal on the phone and the fact that the typical
phone is carried in a pocket or bag shielding the microphone from the environment. Our particular
motivating application is a mobile phone-based countersniper system.

2 Thrust II: Optimal Target Recognition and Tracking Algorithms in Ur-
ban Environments

Investigators: Bela Bollobas, Xenofon Koutsoukos, Akos Ledeczi, Shankar Sastry, and Allen Yang.
The focus of Thrust II has been to develop new algorithms and software for tracking and classifying mul-

tiple targets in sensor webs. Particularly for human targets, we are interested in recovering their identities,
poses, actions, and finally inference of possible adversarial intents. We are also interested in studying au-
tonomous and adaptive mobility of sensor networks in urban environments. One central theme crystallized
via collaboration among team members is distributed perception. A key tenet of distributed perception is to
push the recognition tasks out to the edge of a sensor network and only enable post-processed observations
data in real-time to centralized stations for further processing.

1. High-Dimensional Pattern Recognition via Sparse Representation (Sastry & Yang).

One of our best-known studies in this area is a recent work on sparse representation-based classifica-
tion (SRC) and its application in robust face recognition [89,106,107,112,115]. Face recognition has
enjoyed sustained interest in the community mainly because many of the common image nuisances
in face recognition have plagued other vision systems in general: illumination, occlusion, pose, and
misalignment. Recent studies have shown that the concept of sparse representation plays a critical
role in modeling recognition functions in human vision [107]. Motivated by the emerging theory of
compressive sensing, we were among the first to introduce the SRC framework for classification of
high-dimensional data, e.g., face images. Using a mixture subspace model, i.e., one subspace model
for each learned subject class, the framework stipulates that a valid query sample can be represented
as a linear combination of all training samples. Seeking the sparsest solution in such a linear system
should lead to nonzero coefficients corresponding only to the training samples of the same class. More
importantly, the new SRC framework can effectively handle a large variety of image nuisances. Two
examples of the SRC estimation on corrupted face images are shown in Figure 1.

This sparsity-based classification technique has been reviewed by several technology articles on the
Communications of the ACM, ABC News, Wired.com, etc., as “a quantum leap in face-recognition
technology.” The work has also been well received and cited outside the face recognition community
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Figure 1: The method represents a query image (left), which is partially occluded or corrupted, as a sparse linear
combination of all the normal training images (middle) plus sparse errors (right).

[115], including in image super-resolution, object recognition, human activity recognition, speech
recognition, and 3-D motion segmentation. In particular, the paper [107] was a Top 100 Download of
IEEE in June, 2010, and has since received more than 800 citations according to Google.

2. Parallelization of Sparsity Minimization Algorithms (Sastry & Yang).

The transition of many compressive sensing and sparse optimization algorithms to commercially suc-
cessful solutions often hinges on the availability of efficient numerical solutions. Speed is exactly one
of the major barriers to process large-scale databases in the above face recognition application.

To address this critical issue, we have studied enabling parallel algorithms to support the deployment
of the above sparsity minimization problems in distributed sensor networks. We envision a cloud-
based architecture can be developed based on modern multi-core CPU/GPU architectures, which will
provide a unified computational platform to analyze multi-modal sensor data from ground (e.g., smart
phones), air (e.g., aerial vehicles), and outer space (e.g., hyperspectral imaging satellites). Our effort in
this direction has led to a prototype real-time face recognition system that can classify high-resolution
face images in the wild for up to hundreds of subject classes [106].

Currently, we are also collaborating with Qualcomm and Texas Instruments to further investigate
hardware acceleration techniques on the next generation mobile CPU/GPU platforms (e.g., ARM
and OMAP). Extensions of these methods to wireless healthcare applications have also been pursued
[60, 108, 110].

3. CITRIC: A Low-Bandwidth Wireless Camera Network Platform (Sastry & Yang).

we proposed and demonstrated a novel wireless camera network system, called CITRIC [47, 116].
The core component of this system is a new hardware platform that integrates a camera, a frequency-
scalable (up to 624 MHz) CPU, 16 MB FLASH, and 64 MB RAM onto a single device. The device
then connects with a standard sensor network mote to form a camera mote, as shown in Figure 2. The
design enables in-network processing of images to reduce communication requirements, which has
traditionally been high in existing camera networks with centralized processing. We also proposed
a back-end client/server architecture to provide a user interface to the system and support further
centralized processing for higher-level applications. Our camera mote enables a wider variety of
distributed pattern recognition applications than traditional platforms because it provides more com-
puting power and tighter integration of physical components while still consuming relatively little
power. Furthermore, the mote easily integrates with existing low-bandwidth sensor networks because
it can communicate over the IEEE 802.15.4 protocol with other sensor network platforms.

4. Planning Along Paths and Coverage Holes using Distributed Camera Networks (Bollobas & Sastry).
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Figure 2: (Left) Assembled camera daughter board with Tmote. (Middle) Camera daughter board with major func-
tional units outlined. (Right) Block diagram of major camera board components.

Distributed camera networks provide rich information about an environment. They have applications
in surveillance, emergency response, and pursuit-evasion problems. In this work [70], we proposed
a framework for efficiently computing paths for an agent from a start state to a goal state identified
in images from the camera views without explicit localization of the cameras. We also show how to
identify and plan tight paths around holes in the camera networks coverage resulting from insufficient
cameras or geometric features in the environment such as circular corridors.

Prior approaches often require unreliable 3D reconstructions, detailed calibration procedures, or video
feed broadcasts to centralized servers that quickly saturate network bandwidth as the size of the net-
work increases. In contrast, we explicitly utilize the distributed nature of the network and assume only
that the cameras can robustly track the agent and identify static occluding contours in the images. With
this limited information space, we build a distributed simplicial representation that generalizes the no-
tion of a graph and captures accurate topological information about the network coverage. This rep-
resentation provides the foundation for our planning algorithms, for which we prove their correctness
using tools from algebraic topology. Using a simulated environment, we analyze the performance of
our approach and demonstrate its effectiveness, scalability, and minimal network bandwidth required.

5. Unsupervised distributed feature selection for multiple-view object recognition (Darrell).

Object recognition of indexing from multiple views usually offers increased performance when com-
pared to single views. However, in a bandwidth-limited environment, it may be difficult to transmit all
the visual features extracted from individual images to perform the task of recognition. We considered
the problem of how to select which visual features to send in each camera view to achieve optimal
results at a centralized recognition or indexing module, as shown in Figure 3.

Our study in [50] has shown that it is possible to achieve very efficient encoding without any informa-
tion exchange between the sensors, by adopting a distributed encoding scheme that takes advantage of
known statistics of the environment. We developed a new method for distributed encoding based on
a Gaussian process formulation, and demonstrated its applicability to encoding visual-word feature
histograms, which are used in many contemporary object indexing and category recognition methods.
Our algorithm exploits redundancy between views and learns a statistical model of the dependency
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Figure 3: An outline of a distributed object recognition framework. Messages are only sent between the
cameras and the recognition module. The system presumes no direct communication between cameras.

between feature streams during an off-line training phase at the receiver. This model is then used
along with previously decoded streams to aid feature selection at each sensor. If the streams are re-
dundant, then only a few features need to be sent. As shown in our experiments, our algorithm is able
to achieve an efficient joint encoding of the feature streams without explicitly sharing features across
views. This results in an efficient unsupervised feature selection algorithm that improves recognition
performance in the presence of limited network bandwidth.

6. Transmission Control Policy Design for Decentralized Detection (Koutsoukos & Ledeczi).

The design of wireless sensor networks for detection applications is a challenging task. On one hand,
classical work on decentralized detection does not consider practical wireless sensor networks. On the
other hand, practical sensor network design approaches that treat the signal processing and commu-
nication aspects of the sensor network separately result in suboptimal detection performance because
network resources are not allocated efficiently. In this work, we attempt to cross the gap between the-
oretical decentralized detection work and practical sensor network implementations. We consider a
cross-layer approach, where the quality of information, channel state information, and residual energy
information are included in the design process of tree-topology sensor networks. The design objective
is to specify which sensors should contribute to a given detection task, and to calculate the relevant
communication parameters. We compare two design schemes: (1) direct transmission, where raw data
are transmitted to the fusion center without compression, and (2) in-network processing, where data is
quantized before transmission. For both schemes, we design the optimal transmission control policy
that coordinates the communication between sensor nodes and the fusion center. We show the per-
formance improvement for the proposed design schemes over the classical decoupled and maximum
throughput design approaches. Our results are reported in [101].

7. High Precision Radio Interferometric Tracking of Mobile Sensor Nodes (Koutsoukos & Ledeczi).

During the past 5 years, we have developed an approach for high precision localization, tracking,
and navigation of mobile sensor nodes based on radio interferemetry. In the last year, we have fi-
nalized the results of TripNav, a localization and navigation system that is implemented entirely on
resource-constrained wireless sensor nodes [1]. The main extension is the development of a method
for estimating the robot heading based on Kalman filtering. Localization and navigation using this
method does not require a digital compass which increases complexity, weight, and cost of the robot.
The method is evaluated using extensive error analysis and simulations.
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3 Thrust III: Assessment Metrics for Sensor Web Systems

Investigators: Bela Bollobas and Michael Gastpar.
This Thrust is focused on theoretical bounds on the performance of different kinds of sensor networks

based on the density of their deployment and the choice of sensing, networking, and signal processing
algorithms.

1. Sparse Support Recovery with Noisy Data (Gastpar).

The fact that sparse vectors can be recovered from a small number of linear measurements has im-
portant and exciting implications for engineering and statistics. However despite the vast amount of
recent work in the field of compressed sensing a sharp characterization between what can and cannot
be recovered in the presence of noise remains an open problem in general. In our work, we have
provided such a characterization for the task of sparsity pattern estimation (also known as support
recovery). Using tools from information theory we have found a sharp separation into two problem
regimes – one in which the problem is fundamentally noise-limited and a more interesting one in
which the problem is limited by the behavior of the sparse components themselves. This analysis has
allowed us to identify settings where existing computationally efficient algorithms such as the LASSO
are optimal as well as other settings where these algorithms are highly suboptimal. Furthermore we
have shown how additional structure can make a key difference analogous to the role of diversity in
wireless communications.

On the engineering side our analysis has answered key engineering questions related to compressed
sensing: Is it better to increase SNR or take more measurements? Is a given algorithm good enough?
What accuracy can be attained? On the mathematical side our results have validated certain phase
transitions predicted by the powerful but heuristic replica method from statistical physics.

2. Energy-Latency Tradeoff for In-Network Function Computation in Random Networks (Bollobas).

The problem of designing policies for in-network function computation with minimum energy con-
sumption subject to a latency constraint is considered. The scaling behavior of the energy consumption
under the latency constraint is analyzed for random networks, where the nodes are uniformly placed
in growing regions and the number of nodes goes to infinity. The special case of sum function com-
putation and its delivery to a designated root node is considered rst. In this paper we propose a policy
which achieves order-optimal average energy consumption in random networks subject to the given
latency constraint. The scaling behavior of the optimal energy consumption depends on the path-loss
exponent of wireless transmissions and the dimension of the Euclidean region where the nodes are
placed. The policy is then extended to computation of a general class of functions which decompose
according to maximal cliques of a proximity graph such as the k-nearest neighbor graph or the ge-
ometric random graph. The modified policy achieves order-optimal energy consumption albeit for a
limited range of latency constraints.

3. Monotone Graph Limits and Quasimonotone Graphs (Bollobas).

The recent theory of graph limits gives a powerful framework for understanding the properties of
suitable (convergent) sequences (Gn) of graphs in terms of a limiting object which may be repre-
sented by a symmetric function W on [0, 1], i.e., a kernel or graphon. In this context it is natural to
wish to relate specific properties of the sequence to specific properties of the kernel. Here we show
that the kernel is monotone (i.e., increasing in both variables) if and only if the sequence satisfies a
“quasi-monotonicity” property defined by a certain functional tending to zero. As a tool we prove an
inequality relating the cut and L1 norms of kernels of the form W1 −W2 with W1 and W2 monotone
that may be of interest in its own right; no such inequality holds for general kernels.
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4 Thrust IV: 3-D Reconstruction of Large-Scale Environments

Investigators: Shankar Sastry, Allen Yang, and Avideh Zakhor.
In this Thrust, we have proposed two novel 3-D geometric algorithms/systems to reconstruct large-

scale urban structures using multiple camera sensors or the integration of mobile camera sensors and depth
sensors.

1. A Portable Data Acquisition System for 3-D Modeling of Building Interiors (Zakhor).

We have developed a human operated backpack data acquisition system equipped with a variety of
sensors such as cameras, laser scanners, and orientation measurement sensors to generate 3D models
of building interiors, including uneven surfaces and stairwells. The backpack system is shown in
Figure 4. An important intermediate step in any 3D modeling system, including ours, is accurate 6
degrees of freedom localization over time. Over the last year, we have developed two approaches
to improve localization accuracy over existing methods. First, we develop an adaptive localization
algorithm which takes advantage of the environments floor planarity whenever possible. Secondly,
we show that by including all the loop closures resulting from two cameras facing away from each
other, it is possible to significantly reduce localization error in scenarios where parts of the acquisition
path is retraced. We experimentally characterize the performance gains due to both schemes.

Figure 4: The backpack data acquisition system.

When building 3D textured models, we find that the localization resulting from scan matching is not
pixel accurate, resulting in misalignment between successive images used for texturing. To address
this, we propose an image based pose estimation algorithm to refine the results from our scan matching
based localization. Finally, we use the localization results within an image based renderer to enable
virtual walkthroughs of indoor environments using imagery from cameras on the same backpack. Our
renderer uses a three-step process to determine which image to display, and a RANSAC framework
to determine homographies to mosaic neighboring images with common SIFT features. In addition,
our renderer uses plane-fitted models of the 3D point cloud resulting from the laser scans to detect
occlusions. We characterize the performance of our image based renderer on an unstructured set of
2709 images obtained during a five minute backpack data acquisition for a T-shaped corridor inter-
section. In Figure 5, we show the rendering result of a complex multi-floor building interiors using
our renderer and the data captured by the above backpack system.

2. Holistic 3-D Reconstruction of Urban Structures from Low-Rank Textures (Sastry & Yang).
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Figure 5: Rendering of an acquired multi-floor building structure: Left: Its interior geometry; Right: The
surface texture images.

Recently, there has been tremendous interest in building large-scale 3D models for urban environ-
ments, which are largely driven by industrial applications such as Google Earth, Street View, and
Microsoft’s Bing Maps, etc. The conventional SFM approach to build a 3D model of a scene typically
relies on detecting, matching, and triangulating a set of feature points (and edges) in multiple camera
views. In practice, researchers have observed that urban scenes often have very special types of shapes
and textures, which may not be ideal for generic SFM techniques. We have recently introduced a new
approach to reconstructing accurate camera geometry and 3D models for urban structures in a holis-
tic fashion, i.e., without relying on extraction or matching of traditional local features such as points
and edges [72]. Our method relies on a new set of semi-global or global features called transform
invariant low-rank texture (TILT), which are ubiquitous in urban scenes. Modern high-dimensional
optimization techniques enable us to accurately and robustly recover precise and consistent camera
calibration and scene geometry from a single or multiple images of the scene. We have demonstrated
the capabilities of our method by showing examples of how to construct 3D models of buildings from
multiple uncalibrated images. Some of the examples are shown in Figure 6.

Figure 6: Left Pair: Example of matched facades of the rectangular building. Right Pair: Frontal reconstructed views,
where pyramids show the estimated location of cameras.
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